Amino Acids, Amino Acidopathies and the Urea Cycle Disorders

Shawn E. McCandless Professor, Department of Pediatrics, Section of Genetics and Metabolism University of Colorado School of Medicine

28 Aug 2020

Some slides adapted from:

Society for Inherited Metabolic Disorders North American Metabolic Academy

Thank you, Jean Marie Saudubrey, Mark Korson, Jerry Vockley and many others

How to recognise different types of trees from quite a long way away.

No.1 The Larch.

Amino acid metabolism

$$R - C\alpha - COOH$$

- Lateral chain R:
 - -CarboxyI: Asp (β), Glu (γ)
 - -Amine: Lys (ε), Orn (δ)
 - -Hydroxyl: Thr, Ser, Tyr
 - -Imidazole: His
 - -Guanidinium: Arg
 - -Thiol: Cys, Hcy

Protein metabolism (Adult 70 kg)

Irreversible degradation

KETOGENIC and **GLUCONEOGENIC** amino acids

Muscle amino acids

1 g N = 6.25 g protein = 30 g muscle

Children's Hospital Colorado

Here, it's different.

De novo amino acid synthesis

- Essential and non-essential amino acids
- Essential AA: Inborn errors of AA catabolism
 - -Cannot be synthesized by humans
 - -Must come from food
- Non-essential AA: Inborn errors of AA synthesis
 - -Can be synthesized by humans
 - -Carbon skeletal comes from glucose and other amino acids
 - -Nitrogen comes from other amino acids

Amino acid classification

Essential	Non-essential
Threonine	Alanine
Valine	Asparagine
Isoleucine	Aspartate
Leucine	Cysteine
Methionine	Glutamate
(Cysteine)	Glutamine
Phenylalanine	Glycine
(Tyrosine)	Hydroxyproline
Lysine	Hydroxylysine
Tryptophan	Proline
Histidine	Serine
Arginine	Tyrosine

Protein catabolism

- Muscle protein content is 20 g%
- Nitrogen protein content is 16%
- 1 g nitrogen = 6.25 g protein = 30 g muscle
- Amino acid composition of proteins is genetically determined (doesn't depend on the diet)
- In catabolic situations amino acids released from muscles are oxidized and nitrogen is converted to urea

Catabolism in control and PKU

Nitrogen excretion

 Relationship between urinary urea nitrogen excretion and body surface area

Food intake

- Feeding → exogenous proteins
 - -Digestion \rightarrow free amino acids and peptides (di- and tri-)
 - -Essential and non-essential amino acids
 - -Allows endogenous protein synthesis
- Defective intake
 - Kwashiorkor: protein-only deficit
 - Marasmus: combined deficit of protein and calories

Amino acidopathies

Majority can be identified by newborn screening

Hyperphenylalaninemias

"Classic" phenylketonuria

–untreated phe >1200 μ mol/L

• "mild PKU"

–untreated phe 600-1200 $\mu mol/L$

- Hyperphenylalaninemia
 - –untreated phe < 600 μ mol/L when well

Phenylalanine hydroxylase (PAH)

BH₄ is also a cofactor for tyrosine hydroxylase (dopamine synthesis) and tryptophan hydroxylase (seratonin synthesis)

Phenylketonuria (PKU)

- Liver phenylalanine hydroxylase (PAH) deficiency
- Autosomal recessive inheritance
- Incidence ~1:16,000 live births in the US

- Homotetramer ("dimer of dimers")
- Allosteric activation
 - confirmation determines enzyme activity
 - Phe activates enzymatically favorable conformation
 - BH4 stablesizes tetramer, but supports lower activity confirmation

PNAS v116 p11229 2019

Other causes of hyperphe

- Rare variants of biopterin synthesis or recycling (about 1% of severe hyperphe)
 - GTP cyclohydrolase
 - Dihydropteridine reductase
 - 6-pyruvoyl-tetrahydropterin synthase
 - All 3 generally more difficult to treat, require BH4 and usually dopa
 - Pterin-alpha-carbinolamine dehydratase
 - Generally mild, excrete 7-biopterin
- Hyperphe, not BH4 deficient
 - DNAJC12 molecular chaperone for the hydroxylases PAH, TH and TPH

Untreated PKU

- "Normal" development for 6–9 months, feeds well
- 9–12 months signs of slowing in developmental progress, head growth slows
- About 1 year clearly developmentally delayed, light hair, eczema, musty odor of "mouse urine", may have seizures
- Severe intellectual disability with behavior problems eventual institutionalization
- White matter hyperintensities "pseudoleukodystrophy"

Pathophysiology

- Elevated total body phenylalanine
- Excessive phe in the brain
- Reduced large neutral amino acid transport into the brain (including tyrosine and tryptophan)
- Reduced synthesis of key neurotransmitters (e.g., dopamine, serotonin), especially during development
 - Mouse data suggests inhibition by CNS Phe of TH and TPH2 activity
- No direct pathologic effect on the liver known

Therapy

- Dietary phe reduction
- Competitive large neutral amino acids supplements
- Chaperone therapy sapropterin
- Enzyme substitution therapy pegvaliase

Experimental

- Gut biome manipulation of absorption
- Gene correction or replacement therapy

Diet therapy

- Restrict dietary protein
- Phenylalanine intake: ~250-350 mg/day in classical form
 - Breastfeeding often manageable
- Supplement with phenylalanine-free medical food to guarantee the daily requirements
 - Non-offending amino acids
 - Glycomacropeptide low phe casein product
 - Vitamins and minerals
 - Distribute through the day
- "Diet for life"

1 g dietary protein \approx 50 mg phe

Strategies for breastfeeding

- Alternate feedings
- Mix in a bottle (breast milk provides intact protein in a traditional formula recipe
- Bottle first with metabolic formula with each feed, followed by nursing (one breast for at least 10 min to access hindmilk)

Table 3

Guidelines for PHE, TYR, and protein intake for individuals with PKU.

AGE	PHE ^a (mg/day)	TYR ^a (mg/day)	Protein ^b (g/kg/day)			
Infants to <4 years ^a						
0 to <3 months ^c	130-430	1100-1300	2.5-3.0			
3 to <6 months	135-400	1400-2100	2.0-3.0			
6 to <9 months	145-370	2500-3000	2.0-2.5			
9 to <12 months	135-330	2500-3000	2.0-2.5			
1 to <4 years ^d	200-320	2800-3500	1.5-2.1			
After early childhood ^e						
>4 years to adult	200-1100	4000-6000	120–140% DRI for age ^f			
Pregnancy and lactation ^g						
Trimester 1	265-770	6000-7600	≥70			
Trimester 2	400-1650	6000-7600	≥70			
Trimester 3	700-2275	6000-7600	≥70			
Lactation ^h	700-2275	6000-7600	≥70			

^a Adapted from Acosta [118], recommendations for PHE and TYR intake for infants and children <4 years with more severe PKU and treated with PHE-restricted diet alone. TYR intake recommendations may require adjustment based on blood TYR monitoring.

Monitoring diet therapy

- Provide adequate calories
- Provide adequate protein, vitamins, minerals
- Maintain normal growth and development
- Monitor blood Phe and Tyr
- Monitor other parameters (development, psychological status, bone density)
 - -Consider monitoring iron and Vitamin D from time to time

Other therapies

Goal to enhance phe tolerance and normalize diet

- Sapropterin
 - -20 mg/kg/day
 - Infant 24 hour trial >30% reduction in phe (with stable or no diet treatment)
 - -Older 48 hours to 30 days trial
 - -May have gradual onset
 - -Requires some protein to work (null alleles unaffected)

Some sapropterin responsive mutations

<u>cDNA</u>	Protein	Cases in PAHdb	Responsive to Sapropterin
c.1222C>T	p.Arg408Trp	6.7%	<10%
c.1066-11G>A (IVS10-11G>A)		5.3%	<10%
c.194T>C	p.Ile65Thr	4.1%	89%
c.782G>A	p.Arg261Gln	3.6%	78%
c.842C>T	p.Pro281Leu	2.9%	None [Leuders et al 2014, biopku.org]
c.1315+1G>A (IVS12+1G>A)		2.8%	12.5% [<u>biopku.org]</u> None [Leuders et al 2014]
c.473G>A	p.Arg158Gln	2.7%	<10%

Data obtained from: PAHdb accessed 5/8/2016 (biopku.org); and Leuders et al [2014]. All changes with >2.5% frequency in the PAHdb database were included. In database searches, homozygosity was assumed for calculations; however, this is a rare finding in <u>consanguineous</u> individuals. It is recommended that all <u>affected</u> individuals be tested for personal responsiveness. Genetic changes shown affect >2.5% of the database population. See <u>biopku.org</u> for the most up-to-date information and additional references.

Other therapies

Goal to enhance phe tolerance and normalize diet

- Pegvaliase
 - -Plant enzyme phenylalanine ammonia lyase
 - -Does not reduce need for tyrosine
 - -Immunologic reactions must be managed
 - -Titrate dose to keep phe in physiological range on normal diet
 - -Not recommended during pregnancy
 - -FDA approval for 16 years and up

"Maternal" PKU

- Phenylalanine teratogenicity
- microcephaly,
- congenital cardiac lesion
- Intellectual disability

"Maternal" PKU Management

- Ideally start aggressive therapy before pregnancy
- Phe in target range as early as possible for unplanned pregnancy
- Often need aggressive Tyr supplements, especially 3rd trimester
- Sapropterin seems safe
- Risk of high phe likely outweighs potential risk for use of sapropterin and consideration for pegvaliase

Universal lessons from PKU

- Screening and treatment can be effective
- NBS can uncover milder forms for which the need to treat may not be obvious
- Unanticipated future consequences, for example maternal PKU, may occur or be revealed
- Treatment/intervention creates a new "natural history"
- The pathogenesis is more complicated than you think
- Alternative therapies may be developed over time

Branched chain AA pathway

Maple syrup urine disease

Branched chain ketoacid dehydrogenase deficiency

- Autosomal recessive inheritance
- Incidence = $\sim 1/185,000$ births
- 4 subunits E1 α , E1 β , E2, and E3
- Mutations known in all four genes
 - -Tyr391Asn substitution in E1a protein is a common founder mutation in the Mennonite population
 - -Mutations in E2 subunit are sometimes thiamine responsive

3 presentations

- Severe neonatal form (<1% residual activity)
 - -Few abnormalities on routine lab tests
 - -Maple syrup odor in urine (2-hydroxyisoleucine)
 - -May have hyperammonemia, hypoglycemia
- Acute intermittent form (with residual activity)
 - -Late onset
 - -Ataxia
 - -Ketoacidotic coma sometimes with hypoglycemia
 - -Amino acid and keto acids can be normal between attacks

3 presentations

- Subacute chronic form (with residual activity)
 - -Hypotonia and developmental delay
 - -Failure to thrive
 - -Spastic paraplegia
- Acute intoxication looks like intoxication
 - -Ataxia prominent
 - -Slurred speech
 - -Disordered thinking
 - -Lethargy progressing to coma

Acute treatment

- Eliminate dietary protein intake
- Supplement valine and isoleucine
 - -Isoleucine, in particular, can become limiting so that leucine remains increased because of protein catabolism
- Provide adequate non-protein energy source
- Avoid hypotonic fluids
- Treat cerebral edema if symptoms develop
- Dialysis

- Be careful with "sick day" formulas
 - Data regarding utility are limited to non-existent
 - they can be overused by families leading to chronic protein deficiency
 - Isoleucine, in particular, can become limiting so that leucine remains increased because of protein catabolism
 - Family should not start without contacting metabolic provider
 - Rarely use for more than 24 hours without adding back protein
- Role of glucose/carbohydrate
 - Prevent gluconeogenesis that drives protein breakdown for substrate (same mechanism as steroids)
 - Provides calories and drives insulin (anabolic driver)
 - Frequent small doses best

Chronic therapy

- Protein-restricted diet supplemented with branched chain amino acid-free medical foods
 - -Recall that muscle (especially red meat) is enriched in leucine
- Leucine intake about 400–600 mg per day (childhood) in severe neonatal forms. Then 600–800 after adolescence
- Supplement valine and isoleucine
- Some forms are responsive to thiamine supplementation
- Liver transplantation is very successful

Branched chain ketodehydrogenase defects: New disorders

Tyrosinemia type 1

- Fumarylacetoacetate hydrolase deficiency
- Autosomal recessive inheritance
- Founder effect
 - -Quebec, Canada
 - -Finland
- 3 presenting forms:
 - Early in infancy (1 to 6 months): Liver disease (hepatic failure or cholestatic jaundice or cirrhosis with renal tubulopathy)
 - Late infancy: Rickets due to renal tubulopathy (Fanconi syndrome) with no obvious liver failure
 - -Porphyria-like attack at any age (can be presenting sign)

Cellular effects tyrosinemia 1

- Toxic compounds (don't cause "intoxication" symptoms)
 - -Fumarylacetoacetate, maleylacetoacetate
 - -Succinylacetone
- Hepatocellular damage
 - -Cirrhosis
 - -Hepatocellular carcinoma
 - -High alpha fetoprotein
- Renal tubule damage
 - -Renal Fanconi syndrome
 - -Hypophosphatemic rickets

Succinylacetone

- Succinylacetone inhibits
 - $-\Delta$ -aminolevulinic acid dehydratase activity
 - Porphyria-like abdominal pain crises
 - Peripheral neuropathy
 - -4-hydroxyphenylpyruvic dioxygenase
 - Tyr II enzyme defect, target of NTBC

Treatment

- 2-(2-nitro-4-trifluoromethylbenzoyl)-1, 3-cyclohexane-dione (NTBC)
 - -Inhibits 4-hydroxyphenylpyruvic acid dioxygenase
 - -Further increases plasma tyrosine
 - -Decreased production of FAA and succinylacetone
 - -Markedly reduces, but may not eliminate, hepatocellular carcinoma
- Phenylalanine and tyrosine restriction to avoid excessive hypertyrosinemia (risk of keratitis as in TYR II)
- Liver transplant if hepatocellular carcinoma develops

Monitoring

- Therapeutic response to nitisinone
 - –Plasma drug concentrations >35 μ mol/L inhibit enzyme 99.9%
 - -Some also monitor plasma succinylacetone to see complete suppression (plasma SA normal)
 - -Start nitisinone at 1 mg/kg/day (usually divided BID for first year)
 - -Titrate dose to desired plasma concentration and/or suppression of SA
- \bullet Dietary restriction of Phe and Tyr to keep plasma tyr <600 $\mu mol/L$
- Dried blood spot testing including SA, nitisone concentration, tyr and phe is available but drug concentrations may not correlate well with plasma

Tyrosine catabolic pathway

Other tyrosinemias

- Type II tyrosine transaminase
 - Corneal crystals (painful)
 - Plantarpalmar hyperkeratosis with pits (painful)
 - Intellectual disability in some
- Type III 4-hydroxyphenylpyruvic acid dioxygenase deficiency (enzyme inhibited by NTBC)
 - Intellectual disability
 - Seizures
- Transient tyrosinemia of the newborn
 - Cause unknown
 - Self limiting over 1 to 2 months
 - Apparently benign
 - More common in premature infants

Disulfide bonds

Elevated MET: caveats

- When accurate homocysteine measurements are important, measure "total homocysteine" and don't rely on amino acid analysis, unless:
 - -You can make sure the specimen gets to the lab quickly, and...
 - -The specimen will be deproteinized soon after arrival in the laboratory
- \bullet Total homocysteine in this case measured 150 μM

Classical homocystinuria

- Cystathionine β-synthase deficiency
- Autosomal recessive inheritance
- Incidence = 1/200,000 to 1/400,000 births
 - -Incomplete ascertainment
 - -Cases often missed on newborn screens obtained during the first week of life
- 50% of CBS mutations are pyridoxine (vitamin B₆) responsive

Classical untreated homocystinuria

- Skeletal malformations
 - Marfanoid habitus
 - Osteoporosis
 - Scoliosis
 - Most common in B₆
 non-responsive forms

Courtesy JM Saudubray

Other clinical findings

- Eye abnormalities
 - Ectopia lentis
 - 90% of affected individuals
 - Often bilateral
 - Typically down and toward nose (opposite of Marfan)
 - Myopia
 - May be an isolated presenting sign in children or adults
- Developmental disability and neuropsychiatric symptoms in many, but not all

Recurrent thromboembolism

- May be a isolated presenting sign in late-onset B₆ responsive forms
- Thromboembolism can be a presenting sign
 - Phlebitis
 - -Pulmonary embolism
 - -Cerebrovascular accident
- Environmental triggers
 - -Anesthesia
 - -Catabolism
 - -Smoking
 - -Oral contraceptives

Atherosclerotic disease

• Here, it's different.

Courtesy of JM Saudubray

Thrombosis

Homocystinuria

Thrombus in popliteal vein. Note the collateral circulation.

Thromboembolic stroke

University of Colorado Anschutz Medical Campus

Courtesy JM Saudubray

Other causes of homocystinuria

Yaghmai R et al. Am J Med Genet 2001;108:57

Therapy (CBS deficiency)

- Pyridoxine responsiveness 10 mg/kg/day (max. 500 mg)
 - Test total Hcy 2-3 X before Rx and 2-3 X on Rx after 4-6 weeks
 - >20% decrease is considered responsive (starting above 50 μ mol/L)
 - High dose pyridoxine (>900 mg) can cause peripheral neuropathy
- Folate for all, B12 if deficient
 - HCU formulas usually have plenty of both
- Diet therapy low protein, low-met formula
- Betaine start at 50-100 mg/kg/day divided BID
 - Can increase up to 200 mg/kg/day, rarely benefit to higher dose
 - BHMT is satuable enzyme, so demonstrating additional benefit on plasma Hcy is helpful for higher doses

Urea Cycle Disorders

Neonatal UCD presentation

- 40% of urea cycle disorder cases
- Neurological
 - -Lethargy/poor feeding
 - -Decreased mental status/apnea
 - -Hypotonia
 - -Seizures
- Gl
 - -Poor feeding/vomiting (neurological symptoms)
 - -Liver dysfunction with increase in ALT, AST and PT, INR
- Pulmonary
 - -Tachypnea

Initial UCD lab findings

- Initial respiratory alkalosis in neonates (7.56/22)
- Hyperammonemia (>150 umol/L, up to thousands)
- Low BUN
- Mildly elevated liver enzymes, coagulopathy
- Glucose is usually normal; no acidosis unless there is shock/circulatory collapse (metabolic acidosis) or apnea (respiratory acidosis)
- Amino acid alterations specific to disease, see table

Later-onset UCD presentations

- CNS
- Seizures
- Stroke
- Ataxia
- Coma mimicking encephalitis
- Visual loss
- Intellectual disability
- Neuropsychiatric symptoms (e.g., hallucinations)
- Migraine headaches
- Spastic diplegia/quadriplegia

Later-onset UCD presentations

GI

- Failure to thrive/protein intolerance
- Recurrent vomiting
- Hepatomegaly/hepatic fibrosis

Other

- Reye-like episodes
- Hair fragility and skin rash

Proximal urea cycle blocks

Intramitochondrial, expressed only in liver and intestine

- N-acetylglutamate synthetase (NAGS)
 - -Primary defect
 - Secondary inhibition in OAs/FAOs from depletion of acetyl-CoA and interference with synthesis of N-acetylglutamate, which activates CPS1
- Carbamyl phosphate synthetase 1 (CPS1)
- Carbonic anhydrase VA (CAVA) with CPS and mitochondrial carboxylases deficiency
- Ornithine transcarbamylase (OTC)

Distal urea cycle blocks

Extramitochondrial, ubiquitous expression

- Argininosuccinic acid synthetase (ASS, citrullinemia type I)
- Argininosuccinic acid lyase (ASL, argininosuccinic aciduria)
- Arginase I (ARG, arginase deficiency)

Urea cycle pathway

Nyhan and Ozand. Atlas of Metabolic Diseases.

Here, it's different."

Relative incidence of UCDs

Molecular diagnosis frequency

Dx	US FDA	US NIH-UCDC	France	Japan
OTC	55%	55%	70%	68%
	F (51%)	F (66%)	F (25%)	F (35%)
	M (49%)	M (34%)	M (75%)	M (65%)
ASS	27%	14%	15%	11%
CPSI	14%	6%	6%	12%
ASL	3%*	16%	9%	6%
Arg	<1%	5%	0%	3%
Undx	18%	0%		
N for group	316	480	217	216
Children's Hospital Colorado				ital Colorado

Here, it's different."

Estimated incidence of UCDs

Urea Cycle Disorder

NAGS deficiency CPS1 deficiency OTC deficiency ASS1 deficiency ASL deficiency ARG deficiency Estimated Incidence <1:2,000,000 1:1,300,000 1:56,500 1:250,000 1:218,750 1:950,000

Overall 1:36,000

Blood tests in acute encephalopathy

- Ammonia
- Blood gas
- Electrolytes, bicarbonate, glucose
- Liver function tests and coagulation factors
- Lactate (± pyruvate)
- Carnitine and acylcarnitine profile
- Plasma amino acids
- Plasma total homocysteine
- Creatine kinase
- Check newborn screen results!

N Engl J Med 1984; 310:1500-1505

Natural history

- Early-onset patient may have an apparent "honeymoon" period in early infancy (before 9 months)
- Difficulties start from end of year 1 to ~3
- Difficulties sometimes occur around puberty and/or with menstrual periods
- The disease course is more brittle with the severe, early-onset cases

"Honeymoon period" — why?

- Rapid neonatal growth and protein utilization
- Restricted environmental exposure to infection
- Simpler diet
- Later complications
 - -Switch from breast to cow's milk
 - -Diet more complex and chances to cheat
 - -Exposure to infections
 - -Decrease in growth velocity and nitrogen building

Urine tests in acute encephalopathy

- Urinalysis with metered pH, check ketones
- Organic acids
- Orotic acid quantitative
- Amino acids

OTC deficiency (males)

- Most common urea cycle defect
- X-linked inheritance
- Little or no enzyme activity in early-onset males
- Laboratory
 - -Respiratory alkalosis an important clue
 - Hyperammonemia (can rise to the 1000s µmol/L, normal <100 in infant)
 - -Low BUN
 - -Elevated AST and ALT, increased PT and INR
 - -No or low ketosis (in contrast to organic acidemias), order urinalysis

Biochemical lab findings

- Plasma amino acids
 - -Marked elevation in plasma glutamine
 - -Glutamine to ammonia ratio >1.6 (µmol/L for both)
 - -Very low citrulline
 - -Arginine normal to low, lysine high
- Urine organic acids
 - -Urine orotic acid elevated (order quantitative value)

OTC deficiency (males) — late onset

- Residual enzyme activity present
- Presentations
 - -May present at any age
 - -Wide range of neurologic/psychiatric phenotypes
 - -Can be unmasked by steroids, valproate, anesthesia
 - Order an ammonia level for unexplained altered mental status
 - Brain damage as a result of marked hyperammonemia may be irreversible
 - Early recognition of hyperammonemia can prevent death and disability

OTC deficiency (females)

- If symptomatic, generally have null mutations on one X –Symptoms depend on lyonization pattern in liver
- Onset at any age
- Can present with neonatal symptoms as with males
- Recurrent emesis, \pm elevated AST, ALT, PT, INR
- Protein avoidance may be present, \pm failure to thrive

OTC deficiency (females)

- Recurrent hyperammonemia ± coma
- Neuropsychiatric symptoms: confusion, ataxia, seizures, hallucinations, vision loss, developmental delays
- At risk during the post-partum period
- Other triggers: infection, diet change, change in growth, steroids, stress, chemotherapy, anesthesia (as for males)

Lab testing in OTC females

- Urine orotic acid and plasma glutamine may be elevated, but may be normal when well (like late-onset males)
- Diagnostic testing
 - Allopurinol challenge, allows detection of increase in orotic acid production (not sensitive or specific)
 - OTC gene sequencing and deletion/duplication analysis is easiest (80– 90% sensitive)
 - -Enzymatic testing
 - Requires liver tissue (sampling error possible in females)
 - Secondary partial CPS1 decrease due to negative feedback, CPS1 is also assayed
 - If withdrawing care, GET LIVER TISSUE for post-mortem enzyme testing to confirm diagnosis, as DNA may be negative

Other Proximal UCDs: CPS1, NAGS and CAVA deficiency

- Clinical
 - Both are similar to OTC, see above
 - Severe and mild forms described (early- and late-onset)
 - Equal number of males and females (recessive)
- Laboratory
 - Plasma AAs similar to OTC: high glutamine, low citrulline
 - -BUT no elevation in urine orotic acid
 - Lactic acidemia and organic aciduria in CAVA
- Diagnosis
 - CPS1 enzyme assay in liver, can also sequence
 - Must sequence NAGS, no enzymatic assay

NAG analog is a therapy!

Cofactor therapy in NAGS deficiency — carbamylglutamate

•Stable analog of N-acetylglutamate, therefore is a cure for NAGS deficiency

•May be effective in some individuals with CPS1 (e.g., with N-acetylglutamate binding site mutations) and CAVA

•Approved in US for NAGS deficiency, current US multi-center trial in organic acidemias, OTC and CPS1 disorders

ASS deficiency (citrullinemia 1)

- Clinical
 - -Like OTC, CPS1, NAGS deficiency
 - -Early- and late-onset forms, recessive condition
 - -Mild forms identified by newborn screening
- Diagnosis
 - DNA sequencing
 - -Enzyme testing in fibroblasts
- Laboratory
 - Plasma citrulline high (>500 µmol/L)
 - -May be lower in individuals identified by newborn screening
 - -Heterozygotes may have mild elevations of plasma citrulline
 - -Orotic acid high to normal

Citrin deficiency (citrullinemia 2)

- Clinical
 - Neonatal intrahepatic cholestasis due to citrin deficiency (NICCD)
 - Transient jaundice
 - No hyperammonemia
 - Can resolve spontaneously
 - Late onset
 - Neuropsychiatric disorders, sleep disturbances, developmental delay
 - Sugar aversion due to carbohydrate-induced hyperammonemia
- Laboratory
 - Moderate hyperammonemia
 - Citrulline 30–300 μ mol/L, can see elevated threonine, methionine
- Diagnosis
 - DNA sequencing of SLC25A13
 - Common mutation in Asian populations

ASL deficiency

- AKA argininosuccinic aciduria
- Clinical
 - Neonatal hyperammonemic coma
 - Fragile hair (trichorrhexis nodosa)

- Liver disease: hepatomegaly, dysfunction, even chronic cirrhosis
- Late-onset hyperammonemia \pm neuropsychiatric disease
- Laboratory
 - Plasma and urine ASA (only disorder where it's detected)
 - Plasma citrulline and glutamine elevated
 - Plasma arginine low or normal
- Diagnosis
 - DNA sequencing
 - Enzyme activity measured in fibroblasts

Alternative Treatment Strategies for Acute Hyperammonemia

- 1. Reduce ammonia synthesis (adequate energy, low protein, essential amino acids)
- 2. Remove ammonia (hemodialysis)
- 3. Provide a detour (benzoate, phenylacetate)
- 4. Reprime open urea cycle (arginine)
- 5. Remove inhibitor (carnitine)
- 6. Replace activator (carbamylglutamate)

Arginase deficiency

Clinical

- Unique clinical presentation
- Rarely neonatal jaundice
- Spastic diplegia, progressive intellectual disability with deterioration
- Growth arrest
- Asymptomatic or mild forms in case of residual enzyme activity

Arginase deficiency

- Laboratory
 - -Elevated plasma arginine, glutamine
 - -Hyperammonemia may be intermittent
 - -Elevated to normal urine orotic acid
- Diagnosis
 - -DNA sequencing
 - -Enzyme assay in red blood cells

Hyperammonemia in IEMs

Primary

- Urea cycle enzymes (6 of these)
- Related disorders
 - -Transporter defects
 - Lysinuric protein intolerance (renal, intestinal SLC7A7)
 - Hyperammonemia, hyperornithinemia, homocitrullinuria (mitochondrial, SLC25A15 (ORNT1))
 - Citrullinemia type II due to Citrin deficiency (SLC25A13)
 - -Ornithine aminotransferase (OAT) deficiency, in infancy
 - Pyrolline-5-carboxylate synthetase
 - -Carbonic anhydrase VA (CAVA, bicarbonate donor to CPS)

Hyperammonemia in IEMs

- Secondary
- Organic acidemias
- Fatty acid β-oxidation defects
- Mitochondrial respiratory chain defects
- Primary lactic acidoses (pyruvate carboxylase deficiency, pyruvate dehydrogenase deficiency)
- Carbonic anhydrase VA (CAVA) (bicarbonate donor to CPS and to mitochondrial carboxylases)

Non-IEM causes

- Drug-related (e.g., valproate but valproate can unmask a UCD)
- Acute liver failure (e.g., hepatotoxins, infections such as herpes in newborns — but UCDs can mimic liver failure)
- Reye syndrome (a clinical diagnosis rule out IEMs including UCDs)

Non-IEM causes

- Transient hyperammonemia in the newborn (high ammonia to glutamine ratio, >1.6)
 - -Cause remains unknown
 - -Transient portocaval shunt?
- Chronic urinary tract infection with urinary retention, due to urease-producing bacteria, esp. with bladder reconstructive surgery, stasis
- Overgrowth of bowel flora

Non-IEM causes

- Chronic degenerative liver disease (cirrhosis)
- Portocaval shunts (get liver ultrasound with Doppler)
- Massive tissue necrosis (e.g. leukemia treatment)
- Bacterial overgrowth with urea-splitting organisms
 - -Short gut; severe constipation in children with developmental disabilities
 - -Worsened by renal insufficiency increased recycling of urea

Neonatal hyperammonemia

Acknowledgements

- Pete Baker for running with the idea of this series
- Johan Van Hove originally suggested the idea after the 6th zoom call in one day in March
- Holly Ables for organizing (and not bugging me about when the slides were coming)
- NAMA (Jerry, Mark and Jean-Marie for many borrowed slides)
- All the teachers and mentors over the years that form the knowledge base we each carry. In my case: Art Zinn, Doug Kerr, Chuck Hoppel, Joe Nadeau, Joe Meunzer, Mark Batshaw, Marshall Summar, Jerry Bedoyan, the whole team here in Colorado, the SIMD membership, and many others